Highest vectors of representations (total 18) ; the vectors are over the primal subalgebra. | \(g_{-4}\) | \(g_{-9}\) | \(g_{3}\) | \(h_{4}\) | \(-h_{6}-2h_{5}+2h_{2}+h_{1}\) | \(h_{3}\) | \(g_{-3}\) | \(g_{9}\) | \(g_{4}\) | \(g_{17}+3/4g_{6}+3/4g_{1}\) | \(g_{11}\) | \(g_{18}\) | \(g_{15}\) | \(g_{12}\) | \(g_{7}\) | \(g_{16}\) | \(g_{20}+g_{19}\) | \(g_{21}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(4\omega_{1}\) | \(6\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(2\psi_{1}-4\psi_{2}-4\psi_{3}\) | \(-2\psi_{1}-2\psi_{2}\) | \(4\psi_{1}-2\psi_{2}-4\psi_{3}\) | \(0\) | \(0\) | \(0\) | \(-4\psi_{1}+2\psi_{2}+4\psi_{3}\) | \(2\psi_{1}+2\psi_{2}\) | \(-2\psi_{1}+4\psi_{2}+4\psi_{3}\) | \(2\omega_{1}\) | \(3\omega_{1}-2\psi_{2}-6\psi_{3}\) | \(3\omega_{1}+2\psi_{1}-6\psi_{3}\) | \(3\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}\) | \(3\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}\) | \(3\omega_{1}-2\psi_{1}+6\psi_{3}\) | \(3\omega_{1}+2\psi_{2}+6\psi_{3}\) | \(4\omega_{1}\) | \(6\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\psi_{1}-4\psi_{2}-4\psi_{3}} \) → (0, 2, -4, -4) | \(\displaystyle V_{-2\psi_{1}-2\psi_{2}} \) → (0, -2, -2, 0) | \(\displaystyle V_{4\psi_{1}-2\psi_{2}-4\psi_{3}} \) → (0, 4, -2, -4) | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{-4\psi_{1}+2\psi_{2}+4\psi_{3}} \) → (0, -4, 2, 4) | \(\displaystyle V_{2\psi_{1}+2\psi_{2}} \) → (0, 2, 2, 0) | \(\displaystyle V_{-2\psi_{1}+4\psi_{2}+4\psi_{3}} \) → (0, -2, 4, 4) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0) | \(\displaystyle V_{3\omega_{1}-2\psi_{2}-6\psi_{3}} \) → (3, 0, -2, -6) | \(\displaystyle V_{3\omega_{1}+2\psi_{1}-6\psi_{3}} \) → (3, 2, 0, -6) | \(\displaystyle V_{3\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}} \) → (3, -2, 2, -2) | \(\displaystyle V_{3\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}} \) → (3, 2, -2, 2) | \(\displaystyle V_{3\omega_{1}-2\psi_{1}+6\psi_{3}} \) → (3, -2, 0, 6) | \(\displaystyle V_{3\omega_{1}+2\psi_{2}+6\psi_{3}} \) → (3, 0, 2, 6) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0, 0) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
|
| Cartan of centralizer component.
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\psi_{1}-4\psi_{2}-4\psi_{3}\) | \(-2\psi_{1}-2\psi_{2}\) | \(4\psi_{1}-2\psi_{2}-4\psi_{3}\) | \(0\) | \(-4\psi_{1}+2\psi_{2}+4\psi_{3}\) | \(2\psi_{1}+2\psi_{2}\) | \(-2\psi_{1}+4\psi_{2}+4\psi_{3}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(3\omega_{1}-2\psi_{2}-6\psi_{3}\) \(\omega_{1}-2\psi_{2}-6\psi_{3}\) \(-\omega_{1}-2\psi_{2}-6\psi_{3}\) \(-3\omega_{1}-2\psi_{2}-6\psi_{3}\) | \(3\omega_{1}+2\psi_{1}-6\psi_{3}\) \(\omega_{1}+2\psi_{1}-6\psi_{3}\) \(-\omega_{1}+2\psi_{1}-6\psi_{3}\) \(-3\omega_{1}+2\psi_{1}-6\psi_{3}\) | \(3\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}\) \(\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}\) \(-\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}\) \(-3\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}\) | \(3\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}\) \(\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}\) \(-\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}\) \(-3\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}\) | \(3\omega_{1}-2\psi_{1}+6\psi_{3}\) \(\omega_{1}-2\psi_{1}+6\psi_{3}\) \(-\omega_{1}-2\psi_{1}+6\psi_{3}\) \(-3\omega_{1}-2\psi_{1}+6\psi_{3}\) | \(3\omega_{1}+2\psi_{2}+6\psi_{3}\) \(\omega_{1}+2\psi_{2}+6\psi_{3}\) \(-\omega_{1}+2\psi_{2}+6\psi_{3}\) \(-3\omega_{1}+2\psi_{2}+6\psi_{3}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\psi_{1}-4\psi_{2}-4\psi_{3}}\) | \(\displaystyle M_{-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\psi_{1}-2\psi_{2}-4\psi_{3}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{-4\psi_{1}+2\psi_{2}+4\psi_{3}}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}+4\psi_{2}+4\psi_{3}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{2}-6\psi_{3}}\oplus M_{\omega_{1}-2\psi_{2}-6\psi_{3}}\oplus M_{-\omega_{1}-2\psi_{2}-6\psi_{3}} \oplus M_{-3\omega_{1}-2\psi_{2}-6\psi_{3}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}-6\psi_{3}}\oplus M_{\omega_{1}+2\psi_{1}-6\psi_{3}}\oplus M_{-\omega_{1}+2\psi_{1}-6\psi_{3}} \oplus M_{-3\omega_{1}+2\psi_{1}-6\psi_{3}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}}\oplus M_{\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}} \oplus M_{-3\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus M_{\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}} \oplus M_{-3\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}+6\psi_{3}}\oplus M_{\omega_{1}-2\psi_{1}+6\psi_{3}}\oplus M_{-\omega_{1}-2\psi_{1}+6\psi_{3}} \oplus M_{-3\omega_{1}-2\psi_{1}+6\psi_{3}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{2}+6\psi_{3}}\oplus M_{\omega_{1}+2\psi_{2}+6\psi_{3}}\oplus M_{-\omega_{1}+2\psi_{2}+6\psi_{3}} \oplus M_{-3\omega_{1}+2\psi_{2}+6\psi_{3}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\psi_{1}-4\psi_{2}-4\psi_{3}}\) | \(\displaystyle M_{-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\psi_{1}-2\psi_{2}-4\psi_{3}}\) | \(\displaystyle 3M_{0}\) | \(\displaystyle M_{-4\psi_{1}+2\psi_{2}+4\psi_{3}}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}+4\psi_{2}+4\psi_{3}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{2}-6\psi_{3}}\oplus M_{\omega_{1}-2\psi_{2}-6\psi_{3}}\oplus M_{-\omega_{1}-2\psi_{2}-6\psi_{3}} \oplus M_{-3\omega_{1}-2\psi_{2}-6\psi_{3}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}-6\psi_{3}}\oplus M_{\omega_{1}+2\psi_{1}-6\psi_{3}}\oplus M_{-\omega_{1}+2\psi_{1}-6\psi_{3}} \oplus M_{-3\omega_{1}+2\psi_{1}-6\psi_{3}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}}\oplus M_{\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}} \oplus M_{-3\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus M_{\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}} \oplus M_{-3\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}+6\psi_{3}}\oplus M_{\omega_{1}-2\psi_{1}+6\psi_{3}}\oplus M_{-\omega_{1}-2\psi_{1}+6\psi_{3}} \oplus M_{-3\omega_{1}-2\psi_{1}+6\psi_{3}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{2}+6\psi_{3}}\oplus M_{\omega_{1}+2\psi_{2}+6\psi_{3}}\oplus M_{-\omega_{1}+2\psi_{2}+6\psi_{3}} \oplus M_{-3\omega_{1}+2\psi_{2}+6\psi_{3}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) |